
An Alternative to Intrinsics for Vector Processing

Ross Maloney

June 17, 2024

Abstract

Using inline assembly code in a C program for performing vector processing
has been shown to significantly reduce execution time relative to using Intrinsics
functions for such processing. Here by using zmm registers in place of ymm regis-
ters, it is shown this exchange in a large number of AVX and AVX2 instructions can
extend them to AVX-512 vectors in inline assembly. Exceptions are also covered.

As shown in Jeong et al. (2012) there are three approaches in C program coding to
include Intel SIMD registers for vector processing. Of these, Intrinsics are most widely
used and taught. Intel in Intel (2024b) shows the breadth of such functions. But the
purpose of vector processing is to reduce the execution time of the code. But as Jeong
et al. (2012) show, the use of inline assembly can significantly reduce such execution
time relative to using Intrinsic functions.

It would appear logical to process as many data elements in a vector at the one
hop to decrease the overall execution time. Since Jeong et al. (2012), AVX-512 has been
released by Intel which doubled the vector size to 512 bits over the 256 bits in the AVX
(and AVX2) releases. With the AVX-512 release Intel (2024a) show a large number of
vector processing instructions are available. Where as the AVX-512 instructions can
have a complex structure using auxiliary registers, experience reported here indicates
the less complex AVX instructions extend to AVX-512 vector size. By using zmm regis-
ters in place of ymm registers in the AVX instruction format, a legal instruction which
processes twice as many vector members can result. This substitution approach may
not work for every AVX instruction but it does for a variety of useful instructions.

1 Inline assembly

Substitution of registers in assembly instructions requires direct assess to those in-
struction. Inline assembly provides such assess. Such assembly instructions are pro-
cessed directly by both gcc and clang C compilers with no change to the standard
command line used except including the -m64 flag to generate 64-bit executable code.

1

The extended inline assembly was used. This allows easy movement of data be-
tween the assembly code portion and the C code in which it is embedded. An outline
of the extended inline assembly format is:

asm (” ” code l i n e s
: output operands
: input operands
:) c lobber l i s t

A more general form using asm in place of asm with asm qualifier word was not
used in this work. This form worked with both gcc and clang compilers.

The assembler instructions were encoded in a C-link string. This string can contain
one or more assembler instructions, with each instruction on a single line. A line is
terminated by a C newline character (\n). The alignment of the next line in a stan-
dard assembly format can be achieved by following the newline character with a tab
character (\t).

The next three lines are optional. The output line is denoted by a string containing
=r and then the name of the C variable in parentheses which will receive the output
from the assembly code. The input line is denoted by a string containing r followed
by the C variable in parentheses for which the assembly code obtains input data. The
third line lists registers used in the assembly code which could also be used in the
embedding C code. In this work that possibility was ignored and thus the clobber line
was not used.

The assembly code employs a number of conventions. Registers are prefixed by
double percentage signs (%%). Data movement in each instruction follows the AT&T
convention of moving left to right. Connection between the assembly code and the C
variables in the output and input lines is via a number preceded by a single percentage
sign (%). Those numbers start at zero (0) on the output line and proceed to the input
line. For example, if there were one element on the output line it would be represented
in the assembly code as %0. If in the same arrangement there were two input elements
on the input line, the first would be referenced as %1 and the second as %2. By this
convention, variables in the embedding C code are indirectly referenced.

2 SIMD instruction which worked in inline assembly

The instruction set described in Intel (2024a) is reasonably complex. With respect to the
SIMD instructions this complexity has increased in the AVX-512 release. It appeared
instructions in the previous AVX and AVX2 releases using the ymm registers had been
replaced by more complex instructions to use the longer zmm registers. But longer the
register the better the efficiency of the instruction.

2

The program of Figure 1 was used to test whether the ymm instructions in Intel
(2024a) would perform the same using zmm registers. Instructions which were thought
to have value in relation to undefined future work were testing. All testing was per-
formed on a MacPro 2019 computer with a 28 core Intel Xeon W processor chip gov-
erned by a standard Debian Linux operating system. Compiling was performed using
both gcc and clang.

Figure 1: Example template program which was altered for testing inline instructions

1 # include <s t d i o . h>
2
3 i n t main ()
4 {
5 long a1 [] = {1 , 2 , 3 , 4 , 35 , 6 , 7 , 8 , −7 , 45 , 23 , −12 , 8 ,
6 78 , 34 , −7} ;
7 long b1 [] = {−25 , 16 , 27 , 8 , 9 , 30 , −15 , −32 , −34 , 8 , 90 ,
8 100 , −57 , 23 , 12 , 8 7} ;
9 long b3 [] = {4 , 1 , 5 , 2 , 6 , 3 , 4 , 4 , 0 , 0 , 0 , 9 , 0 , 0 ,

10 0 , 8} ;
11 long b4 [] = {1 , 2 , 2 , 1 , 3 , 1 , 1 , 1 , 3 , 1 , 1 , 1 , 1 , 1 ,
12 1 , 2} ;
13 long c [1 6] ;
14 f l o a t g1 [] = {1 . 3 , −5 .7 , 1 2 . 3 , −6 .1 , 7 . 8 , 1 0 . 0 , 1 3 . 4 , 1 0 0 . 3 ,
15 2 3 . 1 , −23.1 , 4 5 . 2 , 4 . 2 , 9 . 7 , 7 . 0 , 1 2 . 0 , 5 . 6 } ;
16 f l o a t h1 [] = {5 . 9 , −2 .4 , 7 . 6 , −12.0 , 7 . 9 , 1 3 . 7 , 1 2 3 . 0 , 6 7 . 8 ,
17 5 . 7 , 3 4 . 2 , −43.8 , 0 . 2 , 7 6 . 0 , −43.7 , 6 . 9 , 6 . 5 } ;
18 f l o a t f [1 6] ;
19 i n t i ;
20
21 asm v o l a t i l e (”vmovupd %1, %%zmm0 \n\ t ”
22 ”vmovupd %2, %%zmm1 \n\ t ”
23 ”vpsubb %%zmm2, %%zmm1, %%zmm0 \n\ t ”
24 ”vmovupd %%zmm2, %0”
25 : ”=m” (c [0])
26 : ”m” (a1 [0]) , ”m” (b1 [0])
27) ;
28 for (i = 0 ; i < 1 6 ; i ++) p r i n t f (”%ld ” , c [i]) ;
29 p r i n t f (”\n”) ;
30
31 return 0 ;
32 }

The range of tests required the program of Figure 1 to be adapted. The arrays of
data sent to and received from the assembly code was matched to the requirements
of the instruction under test. This was done by changing the array in included in
lines 23 and 24. This enabled the register load instructions at lines 19 and 20, and the

3

register read instruction at line 22 to remained unchanged for each test. In the case of
and instruction requiring two registers, line 20 was deleted and register %%zmm1 was
removed from line 21 which contained the instruction under test.

Tables 1 and 3 contain the result of the tests. The tests are grouped into the size of
data which were contained in the vectors. The "m" 1 and "m" 2 columns correspond
to the first and second entries on line 24 of Figure 1, respectively. The columns headed
"=m" correspond to line 23. The vec column contains the C data array used in the
test, and the z is the zmm register number used.

Table 1: AVX/AVX2 instructions using zmm registers which move data about

Data Op code ”m” 1 ”m” 2 ”=m” Description
bits vec type z vec type z vec type z

32 vmovups b3 int 2 c int 1 int copy
32 vmovups g1 float 2 f float 1 fp copy
32 vpermd a1 int 2 b3 int 1 c int 0 int permute
32 vpermps a1 int 2 b3 int 1 c int 0 int permute
32 vpermd g1 float 2 b3 int 1 f float 0 fp permute
32 vpermps g1 float 2 b3 int 1 f float 0 fp permute
64 vmovups b3 long 2 c long 1 long copy
64 vmovups g1 double 2 f double 1 dp copy
64 vpermpd a1 long 2 b3 long 1 c long 0 long permute
64 vpermq a1 long 2 b3 long 1 c long 0 long permute
64 vpermpd g1 double 2 b3 long 1 f double 0 dp permute
64 vpermq g1 double 2 b3 long 1 f double 0 dp permute

The tables of results are divided into two by the type of operations they contain.
Table 3 contains instructions which make changes to the data element of a vector, for
example by arithmetic operation. Table 1 by contrast does not change the value of the
data elements but move those data elements about.

In some instances in Tables 1 and 3 the "=m" type" and "m" type are shown as
abbreviateion. The correspondence of such entries with the data type of the array in
memory as compiled is given in Table 2.

Table 2: Correspondence between SIMD tabulated types and C data types

Table type Compiler C type
char signed char
short short
int int
long long
float float
double double

4

Table 3: AVX/AVX2 instructions using zmm registers which process data

Data Op code ”m” 1 ”m” 2 ”=m” Description
bits vec type z vec type z vec type z

8 vpaddb a1 char 1 b1 char 2 c char 0 add
8 vpsubb a1 char 1 b1 char 2 c char 0 subtract
8 vpmaxsb a1 char 1 b1 char 2 c char 0 maximum
8 vpminsb a1 char 1 b1 char 2 c char 0 minimum

16 vpaddw a1 short 1 b1 short 2 c short 0 add
16 vpsubw a1 short 1 b1 short 2 c short 0 subtract
16 vpmaxsw a1 short 1 b1 short 2 c short 0 maximum
16 vpminsw a1 short 1 b1 short 2 c short 0 minimum
32 vpaddd a1 int 1 b1 int 2 c int 0 add
32 vpsubd a1 int 1 b1 int 2 c int 0 subtract
32 vpmulld a1 int 1 b1 int 2 c int 0 multiply
32 vpmaxsd a1 int 1 b1 int 2 c int 0 maximum
32 vpminsd a1 int 1 b1 int 2 c int 0 minimum
32 vpsllvd a1 int 1 b4 int 2 c int 0 int left shift
32 vpsrlvd b3 int 1 b4 int 2 c int 0 int right shift
32 vcvtdq2ps a1 int 2 f float 1 I32 → FP32
64 vpaddq a1 long 1 b1 long 2 c long 0 add
64 vpsubq a1 long 1 b1 long 2 c long 0 subtract
64 vpmullq a1 long 1 b1 long 2 c long 0 multiply
64 vpmaxsd a1 long 1 b1 long 2 c long 0 maximum
64 vpminsd a1 long 1 b1 long 2 c long 0 minimum
64 vpsllvq a1 long 1 b4 long 2 c long 0 long left shift
64 vpsrlvq b3 long 1 b4 long 2 c long 0 long right shift
64 vcvtqq2pd a1 long 2 f double 1 I64 → DP64
32 vaddps g1 float 1 h1 float 2 f float 0 add
32 vsubps g1 float 1 h1 float 2 f float 0 subtract
32 vmulps g1 float 1 h1 float 2 f float 0 multiply
32 vdivps g1 float 1 h1 float 2 f float 0 divide
32 vfmadd231ps g1 float 1 h1 float 2 f float 0 FMA add
32 vfmsub231ps g1 float 1 h1 float 2 f float 0 FMA subtract
32 vmaxps g1 float 1 h1 float 2 f float 0 maxiumm
32 vminps g1 float 1 h1 float 2 f float 0 minimum
32 vcvttps2dq g1 float 2 c int 1 FP32 → I32
64 vaddpd g1 double 1 h1 double 2 f double 0 add
64 vsubpd g1 double 1 h1 double 2 f double 0 subtract
64 vmulpd g1 double 1 h1 double 2 f double 0 multiply
64 vdivpd g1 double 1 h1 double 2 f double 0 divide
64 vfmadd231pd g1 double 1 h1 double 2 f double 0 FMA add
64 vfmsub231pd g1 double 1 h1 double 2 f double 0 FMA subtract
64 vmaxps g1 double 1 h1 double 2 f double 0 maxiumm
64 vminps g1 double 1 h1 double 2 f double 0 minimum
64 vcvttpd2qq g1 double 2 c long 1 DP64 → I64

5

With respect to Table 1 the following should be noted. A number of pairs of in-
structions appear to yield the same result. More significant, right shifting instructions
should not be used if negative numbers are present in the vector being operated upon.

3 Cautionaries

As noted above, right shift with negative numbers in the vector requires a different
approach. Right shifting divides the absolute value of each vector element by the
specified power of 2. But the vpsrlvd and vpsrlvq instructions do not shilf neg-
ative sign bit into vacated element bit positions. Instead the vpsraw and vpsrad
instructions are alternatives to such right shift instructions. However the instruction
format is different to that used in Figure 1.

Extending the range of AVX and AVX2 instructions by using zmm registers in place
of ymm registers does not always work. Some of those instances are noted in Table 4.
In those instructions, vdpps adopts a different format to the others.

Table 4: AVX/AVX2 instructions not extended to zmm registers

Data type Op code Description
16-bit short vphaddw horizontal add pairs
32-bit float vhaddps horizontal add pairs
32-bit integer vphaddd horizontal add pairs
32-bit float vdpps dot product
64-bit double vhaddpd horizontal add pairs

What appeared to be missing from both the AVX and AVX-512 instruction sets
of Intel (2024a) was a horizontal sum along a whole vector, distinct from horizontal
sum of pairs. Through a combination of repeated horizontal add pairs and vector
permutation this sum can be obtained. By contrast in the SSE instruction set there was
the vdppd instruction for double prevision and vdpps for single precision floating
point vectors. These gave the dot product of two vectors. If one vector was a unit
vector, then the sum of the elements in the other vector resulted. Never a dot product
or vector sum of integers.

Care must be taken in matching the data array type used and the inline assembly
code. Arithmetic instructions are sensitive to such match. In the case of operating on
integers, a mismatch can result in a negative data value causing the following result
values increased by one. By contrast, the instruction vmovups was successfully used
with all data types to move data between AVX registers and memory.

6

References

Intel (2024a), “Intel 64 and IA-32 Architectures Software Developer’s Manual”, Intel
Corporation (), cdrdv2-public.intel.com, accessed May 2, 2024.

Intel (2024b), “Intel Intrinsics Guide”, www.intel.com/content/www/us/en/
docs/intrinsics-guide/html, accessed May 25, 2024.

Jeong, H., et al. (2012), “Performance of SEE and AVX Instruction Sets” (), arXiv
.org/1211.0820v1, accessed Apr. 27, 2024.

7

