
Tutorial for using pocl on CPU multi-cores

Ross Maloney

August 2, 2023

Portable OpenCL, or pocl, is an implementation of OpenCL, or Open Computer
Language. Although pocl is designed to be easily ported to different target proces-
sors, the distributed implementation uses CPUs as it’s target. Specifically such CPUs
are assumed to be multi-core processors. As such if differs from a large number of
OpenCL distributions which are targeted for GPUs.

Multi-core CPUs are different to processors generally encountered with OpenCL.
Generally there are fewer compute units. In this context a compute unit corresponds
to one of the multi-cores. One OpenCL kernel executes on multiple multi-cores. In
contrast to processors generally considered in OpenCL, these multi-cores are more
capable processors and thus able to handle more complex kernels. The art of using
OpenCL on multi-cores, and thus using pocl, is balancing the reduction in process-
ing elements available by increasing the complexity of the program (kernel) which
can execute on such elements.

This tutorial is based on using an Apple Mac Pro 2019 with 28 cores operating
under Debian Linux.

1 Installing the pocl system on Debian

Assume a standard Debian Linux system has been installed. In addition, a clang dis-
tribution had to be installed into it. The clang package was installed from a Debian
archive using aptitude. This installed clang version 14. Installing clang on the
system resulted in clang able to compile and produce an executable C program,
but not an OpenCL program.

Then aptitudewas used to install pocl-opencl-icd. This brought in a num-
ber of other elements. In /etc/OpenCL/vendors (which this installation created)
there was a file pocl.icd which contained the filename libpocl.so.2.10.0.
An attempt to install libpocl-dev using aptitude gave the information that

1

ocl-icd-opencl-dev was required instead. It was installed using aptitude.
This installed the necessary header files and libraries for OpenCL and also for pocl.

To use pocl, the parameter -lOpenCL was added to the standard clang com-
mand line to link with the pocl library.

2 Applying OpenCL to multi-cores

OpenCL is an open source follow on from the proprietary, although freely dis-
tributed, CUDA. Both can do the same processing but with different nomenclature,
with OpenCL supporting the CPU multi-core environment. Because OpenCL fol-
lowed CUBA in appearance historically, the CUDA approach is widespread. Table 1
attempts to link those approaches.

Table 1: Correspondence between OpenCL and CUDA parameters

Functional role OpenCL CUDA
Major division work group block
Minor division work item thread
L1 memory global memory global memory
L2 memory local memory shared memory
L3 memory private memory local memory
Read only memory constant memory constant memory
Picture frame storage image texture
Device function device
Constant memory constant constant
Device variable global device
Shared memory local shared
Number of blocks get num groups gridDim
Size of block get local size() blockDim
Block index get group id() blockIdx
Thread index in block get local id() threadIdx
Kernel identifier kernel global
Kernel launch dimemsion of indexing number of blocks

dimension’s thread count threads per block
dimension’s threads per block

A important difference between OpenCL and CUDA occurs in the parameters
used to launch their processing kernel. Although processing in both OpenCL and
CUDA is primarily directed at blocks with threads following, OpenCL does not
give a block count (work group count) in the launch. Blocks needed in OpenCL are
calculated from the thread counts supplied.

2

Each core in a multi-core OpenCL application is a separate compute unit. Gener-
ally such cores are fewer in number than the compute units of a GPU. Thus a mod-
ification in approach to kernel programming is warranted. Figure 1 gives the gen-
eral idea of the differences and similarities between using those two environments.
In the multi-core environment pocl maps individual compute units, identified as
work-groups, to cores in a one-to-one fashion.

Core
0

Core
1

Core
2

Core
N

. . .

NDRange

Work
-group

(0,0)

Work
-group

(0,1)

Work
-group

(0,2)

Work
-group

(0,3)

Work
-group

(0,4)

Work
-group

(1,0)

Work
-group

(1,1)

Work
-group

(1,2)

Work
-group

(1,3)

Work
-group

(1,4)

Work
-group

(2,0)

Work
-group

(2,1)

Work
-group

(2,2)

Work
-group

(2,3)

Work
-group

(2,4)

Work
-group

(3,0)

Work
-group

(3,1)

Work
-group

(3,2)

Work
-group

(3,3)

Work
-group

(3,4)

work-group
(2,3)

Work
-item

(0,0)

Work
-item

(0,1)

Work
-item

(0,2)

Work
-item

(0,3)

Work
-item

(0,4)

Work
-item

(0,5)

Work
-item

(1,0)

Work
-item

(1,1)

Work
-item

(1,2)

Work
-item

(1,3)

Work
-item

(1,4)

Work
-item

(1,5)

Work
-item

(2,0)

Work
-item

(2,1)

Work
-item

(2,2)

Work
-item

(2,3)

Work
-item

(2,4)

Work
-item

(2,5)

kernel

Figure 1: Kernel composition to processor’s cores

Familiarity with both OpenCL and CUDA, and programming using the C lan-
guage in each is assumed here. An overall summary of applying OpenCL to multi-
core CPUs is:

3

• Each multi-core is an OpenCL compute unit

• Each compute unit executes one work-group

• Synchronisation of work-groups cannot occur

• The kernel can be more complex than those used with a GPU

• Kernels can access the L1, L2, and L3 memory of it’s execution multi-core

• Only work-items information is passed to the clEnqueueNDRangeKernel()
call which launches the kernel.

A further assistance is provided in Table 2 with respect to writing code for nav-
igation within a kernel. The parallel executions of the one kernel code are indepen-
dent of one another. Thus each kernel must determine it’s overall part in the total
computation by referring back to the OpenCL system by using OCL library calls. In
Table 2 the variable used in the following programs for each of such calls is tabu-
lated. In their use, each is prefixed by the direction (eg. x) to denote the direction to
which they apply.

Table 2: Useful kernel reference calls

OCL library call host variable value obtained
get global size() global[] gs ND range length in work-items
get global id() hi highest global work-item in group
get local size() local[] ls work-items per work-group
get local id() li local highest work-item in group
get num groups() ng number of work-groups
get group id() gi group number

3 Addition of columns of data

Figure 2 shows an OpenCL program which adds 7 columns of data with each col-
umn containing 15 integer values. Each column addition is performed by a sepa-
rate work-group. Each of those work-groups execute on a separate CPU multi-core
using a copy of the OpenCL kernel. The arguments to the kernel are a matrix con-
taining the columns of data, the length of the data column, and a vector to contain
the results. Each work-group is to get a copy of the data array but only return a
single integer containing the sum of the data column of that array it summed. The
sum produced by each work-group is returned as a component of the vector which
contains the overall 7 sums required.

4

include <s t d i o . h>
include <s t d l i b . h>
include <time . h>
include <CL/ c l . h>

def ine SIZE 7
def ine LENGTH 15

i n t A[SIZE] [LENGTH] , C[SIZE] ;

const char * programSource =
” k e r n e l \n”
” void add (g l o b a l i n t *A, \n”
” i n t N, \n”
” g l o b a l i n t *C) \n”
”{ \n”
” i n t xhi , j ; \n”
” \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” C[xhi] = 0 ; \n”
” f o r (j = 0 ; j < N; j ++) \n”
” C[xhi] += A[N* xhi + j] ; \ n”
”} \n ” ;

i n t main ()
{

i n t i , j ;
i n t markerA ;

// long t i c k s , my get wtime (void) ;
// f l o a t marker ;

c l p l a t f o r m i d platform ;
c l d e v i c e i d device ;
c l i n t r e t ;
c l u i n t ret num devices , ret num platforms ;
c l c o n t e x t contex t ;
cl mem a mem obj , b mem obj , c mem obj ;
cl command queue command ;
cl program program ;
c l k e r n e l kernel ;
s i z e t g loba l [3] ;
long dataSizeA , dataSizeC ;
s i z e t s i z e r e t ;

/* prepare data */
markerA = 1 ;
f o r (i = 0 ; i < SIZE ; i ++)

f o r (j = 0 ; j < LENGTH; j ++) {
markerA++;
A[i] [j] = markerA ;

}

Figure 2: Program to calculate 7 data vectors in parallel (Continues . . .)

5

dataSizeA = SIZE * LENGTH * s i z e o f (i n t) ;
dataSizeC = SIZE * s i z e o f (i n t) ;

// t i c k s = my get wtime () ;

/* setup CPU */
r e t = clGetPlat formIDs (1 , &platform , &ret num platforms) ;
r e t = clGetDeviceIDs (platform , CL DEVICE TYPE CPU , 1 , &device ,

&ret num devices) ;

contex t = c lCreateContext (NULL, 1 , &device , NULL, NULL, &r e t) ;
command = clCreateCommandQueueWithProperties (context , device , 0 , &r e t) ;

a mem obj = c l C r e a t e B u f f e r (context , CL MEM READ ONLY, dataSizeA ,
NULL, &r e t) ;

c mem obj = c l C r e a t e B u f f e r (context , CL MEM WRITE ONLY, dataSizeC ,
NULL, &r e t) ;

r e t = clEnqueueWriteBuffer (command, a mem obj , CL TRUE , 0 , dataSizeA ,
A, 0 , NULL, NULL) ;

program = clCreateProgramWithSource (context , 1 ,
(const char **)& programSource , NULL, &r e t) ;

r e t = clBuildProgram (program , 1 , &device , NULL, NULL, NULL) ;
kernel = c lCrea teKerne l (program , ”add ” , &r e t) ;

i = LENGTH;
r e t = clSetKernelArg (kernel , 0 , s i z e o f (cl mem) , &a mem obj) ;
r e t = clSetKernelArg (kernel , 1 , s i z e o f (i n t) , &i) ;
r e t = clSetKernelArg (kernel , 2 , s i z e o f (cl mem) , &c mem obj) ;

g loba l [0] = SIZE ;
r e t = clEnqueueNDRangeKernel (command, kernel , 1 , NULL, global ,

NULL, 0 , NULL, NULL) ;

r e t = clEnqueueReadBuffer (command, c mem obj , CL TRUE , 0 , dataSizeC , C,
0 , NULL, NULL) ;

r e t = c l F l u s h (command) ;
r e t = c l F i n i s h (command) ;
r e t = c lRe leaseKerne l (kernel) ;
r e t = clReleaseProgram (program) ;
r e t = clReleaseMemObject (a mem obj) ;
r e t = clReleaseMemObject (c mem obj) ;
r e t = clReleaseCommandQueue (command) ;
r e t = c lRe leaseContext (contex t) ;

// t i c k s = my get wtime () − t i c k s ;
// marker = t i c k s ;
// p r i n t f (” Elapse time : %.1 f m i l l i −sec \n” , marker / 1 0 0 0 0 0 0 . 0) ;

Figure 2: Program to calculate 7 data vectors in parallel (Continues . . .)

6

f o r (j = 0 ; j < LENGTH; j ++) {
f o r (i = 0 ; i < SIZE ; i ++) p r i n t f (”%6d ” , A[i] [j]) ;
p r i n t f (”\n ”) ;

}
p r i n t f (”\n ”) ;
f o r (i = 0 ; i < SIZE ; i ++) p r i n t f (”%6d ” , C[i]) ;
p r i n t f (”\n ”) ;

re turn (0) ;
}

Figure 2: Program to calculate 7 data vectors in parallel

This program was written in C. C stores a two dimensional array in row order.
The program is posed as a one dimensional problem from the standpoint of the
host part of the total program. The statements which are commented out perform
execution timing which is discussed in the following Section.

The OpenCL technique of placing both the host and kernel program parts in the
same file was used here. This enabled one application of clang to both compile and
link the program. Successfully having done that, there still remained the possibility
of a kernel error when processed by the clBuildProgram() call. Since the kernel
code is contained within a string, clang does not look at the contents of that siring.
Figure 2 lists the program. Notice the kernel is contained in a multi-line string. The
length of the data vector is given by the constant LENGTH and the number of data
columns, and also the number of work-groups to be used is given by the constant
SIZE.

2 17 32 47 62 77 92
3 18 33 48 63 78 93
4 19 34 49 64 79 94
5 20 35 50 65 80 95
6 21 36 51 66 81 96
7 22 37 52 67 82 97
8 23 38 53 68 83 98
9 24 39 54 69 84 99
10 25 40 55 70 85 100
11 26 41 56 71 86 101
12 27 42 57 72 87 102
13 28 43 58 73 88 103
14 29 44 59 74 89 104
15 30 45 60 75 90 105
16 31 46 61 76 91 106

135 360 585 810 1035 1260 1485

Figure 3: Output produced by the program of Figure 2

7

Figure 3 shows the Output produced by running the program of Figure 2.

Notice in the listing of Figure 2 a number of lines are commented out. Those lines
were associated with timing the execution of the program. Their use is described
below.

4 Alternate approaches to calculation by a kernel

There are four manners to approaching coding of a kernel for multi-cores. Each uses
memory of the core differently. The kernel used in Figure 2 is one approach. It uses
global memory only. This is the memory which links the kernel to the host; the
memory addressed by the clCreateBuffer() and clEnqueueReadBuffer()
OpenCL calls of the host program. It is the slowest execution memory. Getting data
moving between the host and kernel requires using this memory. Three alternatives
are considered here which involve using private memory available on the multi-
cores.

Private memory on a multi-core is a cache memory. A multi-core has three cache
memories; L1, L2, and L3. The data shown in Table 3 shows the size of such cache,
where their speed ranges from L1 to L3, in descending order. The amount of each
type of cache memory also varies. Each multi-core has its own L1 and L2 cache, but
L3 is shared by all the multi-cores present. The L1 cache is the best to exploit. It
being the fastest but it is only small in size. Putting those cache sizes into different
terms, the size of 896 KiB means capable of holding 224,000 32-bit values, or 112,000
64-bit values in total. Cache sizes for the Mac Pro 2019 are large compared with
multi-cores generally found currently, as typified by the Mac Pro 2013. Here the
Mac Pro 2019 was used.

Table 3: Apple Intel Mac core data shown by lscpu

Mac Pro 2019 Mac Pro 2013
CPU model Intel Xeon W-3275M Intel Xeon E5-1650
cores 28 6
threads per core 2 2
cpu GHz 2.5 3.5
L3 cache MiB 38.5 (1 instance) 12 (1 instance)
L2 cache MiB 28 (28 instances) 1.5 (6 instances)
L1 cache KiB 896 (28 instances) 192 (6 instances)

Figure 4 shows three kernels each as a replacement to that used in Figure 2.
Nothing else was changed. All the variables defined in the kernel code are stored in
the private (L1 cache) of each multi-core which executes this kernel code. This is the

8

const char * programSource =
” k e r n e l \n” kernel1
” void add (g l o b a l i n t *A, \n”
” i n t N, \n”
” g l o b a l i n t *C) \n”
”{ \n”
” i n t xhi , j ; \n”
” i n t tmp ; \n”
” \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” tmp = 0 ; \n”
” f o r (j = 0 ; j < N; j ++) \n”
” tmp += A[N* xhi + j] ; \n”
” C[xhi] = tmp ; \n”
” \n”
”} \n ” ;

const char * programSource =
” k e r n e l \n” kernel2
” void add (g l o b a l i n t *A, \n”
” i n t N, \n”
” g l o b a l i n t *C) \n”
”{ \n”
” i n t xhi , j ; \n”
” i n t fastA [2 0 0 0] ; \n”
” \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” C[xhi] = 0 ; \n”
” f o r (j = 0 ; j < N; j ++) \n”
” fastA [j] = A[N* i + j] ; \ n”
” f o r (j = 0 ; j < N; j ++) \n”
” C[xhi] += fastA [j] ; \n”
” \n”
”} \n ” ;

const char * programSource =
” k e r n e l \n” kernel3
” void add (g l o b a l i n t *A, \n”
” i n t N, \n”
” g l o b a l i n t *C) \n”
”{ \n”
” i n t xhi , j ; \n”
” i n t fastA [2 0 0 0] ; \n”
” i n t tmp ; \n”
” \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” f o r (j = 0 ; j < N; j ++) \n”
” fastA [j] = A[N* i + j] ; \ n”
” tmp = 0 ; \n”
” f o r (j = 0 ; j < N; j ++) \n”
” tmp += fastA [j] ; \n”
” C[xhi] = tmp ; \n”
” \n”
”} \n ” ;

Figure 4: Kernels 1, 2, and 3 for summing 7 data columns

9

important point. The 32-bit storage for array fastA[] together with the four other
variables are within the 224,000 32-bit limit of the L1 cache available on each core of
the Mac Pro used here.

Using the kernels from Figure 4 in the program of Figures 2 produced the same
computational sums. Each program was compiled using clang with the -O3 op-
timization flag and linked with the OpenCL library. To compare the behaviour of
these programs the statements commented out in Figure 2 were used to generate
execution times. Running each such timed execution 25 times, the minimum, maxi-
mum, and mean of those 25 repeats are tabulated in Table 4. The time values shown
have units of milli-seconds.

Table 4: Program execution times for kernels calculating 7 columns of values

length min mean max
nullkernel 158.2 166.7 188.7
onerow 15 155.7 163.8 179.0
kernel1 15 157.1 167.2 182.2
kernel2 15 156.8 163.6 173.7
kernel3 15 149.8 167.0 194.1
twoD 15 151.8 166.6 181.1
onerow 1500 156.7 167.7 190.0
kernel1 1500 156.7 168.1 182.8
kernel2 1500 156.7 171.6 195.1
kernel3 1500 157.9 171.5 190.5
twoD 1500 155.3 171.2 183.4

Added to the results in Table 4 is the execution time of a nullkernel in which
the kernel contained only declaration of variables but no other computation. All the
four computational kernels were run using a data length of 15 and 1500. The differ-
ences in the mean execution times appear insignificant. This suggests the majority
of the execution time was consumed in the host program; the amount of compu-
tation was not sufficient to offset this setting up overhead. To reinforce this point
a program to produce the same computational results was written in standard C.
It gave executions times of 0.001, 0.080, 0.265, and 2.662 milli-sec for data column
lengths of 15, 1500, 5000, and 50000 values, respectively. The twoD execution times
are those produced by the program of Figure 5.

The kernel used in the program of Figure 2 and the three in Figure 4 are called by
the same host program. Each produces the same value of each of the seven summa-
tions. They differ in the way memory is used. The kernel of Figure 2 uses only the
host memory passed as arrays A ans C. The kernel1 of Figure 4 uses memory local
of each kernel to hold variable tmp into which the individual sum of data obtained
from the A array. As in each of these approaches, each kernel produces a sum of the
data associated with the assigned kernel. In the kernel1 case, the calculated sum

10

in tmp is assigned to appropriated indexed position in the array C for return to the
host. In the kernel2 approach the data is extracted from the A and stored in the
array fastA which is in the local memory of each kernel. In the kernel3 the local
memories of tmp and fastA are used to calculate the sum in the kernel. Because
each kernel is executed in a separate CPU core, the local memory is local to the core
the individual CPU core used by the kernel.

The programming principle used here is memory declared in the body of a kernel
is local to the compute device, in this case the CPU core, which executes the kernel.

5 Two dimensional approach to vector summing

Having one work-group for each of the vectors is a one dimensional approach. In
the program of Figure 2 this was produced by the 1 in the argument list of the
clEnqueueNDRangeKernel() call and the single dimension of the global[] ar-
ray which indicated the number of work-item. In that case each work-item was con-
tained in it’s own work-group. The work-groups were than launched to execute in
parallel. In a two dimensional approach to this summation problem, work-groups
are assigned to each vector as in the one dimensional approach. Now the data for
each vector are contained in other work-groups. These data work-groups are the
second dimension.

The program in Figure 5 is a two dimensional approach to this summation exam-
ple. In the clEngueueNDRangeKernel() call the dimension argument was set as
2. The global[] array then used two elements, one for the total number of work-
items in the x-direction, and the other for the number in the y-direction. The array
local[] contains the number of work-item per work-group in the corresponding x
and y directions. An array containing the data for each of the work-groups is passed
to the kernel together with the array for each work-group to return it’s sum. Both
those arrays are passed as one dimensional to the kernel. Each work-group kernel
only uses the data which is assigned to it. Notice the kernel variables ny, gx and
nxg are assigned a value in each work-group executing the kernel, corresponding
to the reference calls listed in Table 2. These variables identify the work-group and
thus how the work-group performs in the total computation.

In the case of Figure 5 each work-group is mapped onto a separate core of the
computer by the OpenCL (pocl) system. The number of work-groups mapped in
the x and y directions to cores is obtained by OpenCL (pocl) system by dividing
the work-item entries in the global[] array by the corresponding entry in the
local[] array. Notice in the program of Figure 2 there was no local[] array
passed to the clEnqueueNDRangeKernel(). In that one dimensional case one
work-item per work-group was assumed by the OpenCP (pocl) system.

11

include <s t d i o . h>
include <s t d l i b . h>
include <time . h>
include <CL/ c l . h>

def ine SIZE 7
def ine LENGTH 15

i n t A[SIZE *LENGTH] , C[SIZE] ;

const char * programSource =
” k e r n e l \n”
” void add2d (g l o b a l i n t *A, \n”
” g l o b a l i n t *C) \n”
”{ \n”
” i n t i , j ; \n”
” i n t ygs , xgi , xmg ; \n”
” i n t tmp ; \n”
” \n”
” ygs = g e t g l o b a l s i z e (1) ; \n”
” xgi = get group id (0) ; \n”
” xng = get num groups (0) ; \n”
” \n”
” f o r (i = 0 ; i <= ygs ; i ++) tmp += A[i * xng + xgi] ; \n”
” C[xgi] = tmp ; \n”
”} \n ” ;

i n t main ()

i n t i , j , counter ;
i n t markerA ;
long t i c k s ;
long my get wtime (void) ;
f l o a t marker ;
c l p l a t f o r m i d platform ;
c l d e v i c e i d device ;
c l i n t r e t ;
c l u i n t ret num devices , ret num platforms ;
c l c o n t e x t contex t ;
cl mem a mem obj , b mem obj , c mem obj ;
cl command queue command ;
cl program program ;
c l k e r n e l kernel ;
s i z e t g loba l [3] , l o c a l [3] ;
long dataSizeA , dataSizeC ;
s i z e t s i z e r e t ;

/* prepare data */
markerA = 1 ;
f o r (i = 0 ; i < SIZE ; i ++)

f o r (j = 0 ; j < LENGTH; j ++) {
markerA++;
A[j * SIZE + i] = markerA ;

}

Figure 5: Program to calculate 7 sums in a 2 dimensional ND Range (Continues . . .)

12

dataSizeA = SIZE * LENGTH * s i z e o f (i n t) ;
dataSizeC = SIZE * s i z e o f (i n t) ;

// t i c k s = my get wtime () ;

/* setup CPU */
r e t = clGetPlat formIDs (1 , &platform , &ret num platforms) ;
r e t = clGetDeviceIDs (platform , CL DEVICE TYPE CPU , 1 , &device ,

&ret num devices) ;

contex t = c lCreateContext (NULL, 1 , &device , NULL, NULL, &r e t) ;
command = clCreateCommandQueueWithProperties (context , device , 0 , &r e t) ;

a mem obj = c l C r e a t e B u f f e r (context , CL MEM READ ONLY, dataSizeA ,
NULL, &r e t) ;

c mem obj = c l C r e a t e B u f f e r (context , CL MEM WRITE ONLY, dataSizeC ,
NULL, &r e t) ;

r e t = clEnqueueWriteBuffer (command, a mem obj , CL TRUE , 0 , dataSizeA , A,
0 , NULL, NULL) ;

program = clCreateProgramWithSource (context , 1 ,
(const char **)& programSource , NULL, &r e t) ;

r e t = clBuildProgram (program , 1 , &device , NULL, NULL, NULL) ;
kernel = c lCrea teKerne l (program , ”add2d ” , &r e t) ;

r e t = clSetKernelArg (kernel , 0 , s i z e o f (cl mem) , &a mem obj) ;
r e t = clSetKernelArg (kernel , 1 , s i z e o f (cl mem) , &c mem obj) ;

g loba l [0] = SIZE ; g loba l [1] = LENGTH;
l o c a l [0] = 1 ; l o c a l [1] = 1 ;
r e t = clEnqueueNDRangeKernel (command, kernel , 2 , NULL, global ,

l o c a l , 0 , NULL, NULL) ;

r e t = clEnqueueReadBuffer (command, c mem obj , CL TRUE , 0 , dataSizeC , C, 0 ,
NULL, NULL) ;

r e t = c l F l u s h (command) ;
r e t = c l F i n i s h (command) ;
r e t = c lRe leaseKerne l (kernel) ;
r e t = clReleaseProgram (program) ;
r e t = clReleaseMemObject (a mem obj) ;
r e t = clReleaseMemObject (c mem obj) ;
r e t = clReleaseCommandQueue (command) ;
r e t = c lRe leaseContext (contex t) ;

t i c k s = my get wtime () − t i c k s ;
marker = t i c k s ;
p r i n t f (” Elapse time : %.1 f m i l l i −sec \n” , marker / 1 0 0 0 0 0 0 . 0) ;

Figure 5: Program to calculate 7 sums in a 2 dimensional ND Range (Continues . . .)

13

counter = 0 ;
f o r (j = 0 ; j < LENGTH; j ++) {

f o r (i = 0 ; i < SIZE ; i ++) {
p r i n t f (”%6d ” , A[counter]) ;
counter ++;

}
p r i n t f (”\n ”) ;

}
p r i n t f (”\n ”) ;
f o r (i = 0 ; i < SIZE ; i ++) p r i n t f (”%6d ” , C[i]) ;
p r i n t f (”\n ”) ;

re turn (0) ;
}

Figure 5: Program to calculate 7 sums in a 2 dimensional ND Range

The same output as in Figure 3 was produced. The timing of the execution of the
program is included in Table 4 under the twoD tag.

6 Searching for kernel’s position parameters

Some problems are multi-dimensional by their nature. Of those problems some can
be decomposed into blocks, the blocks handled as separate problems, and the solu-
tion from each block reassembled into the solution to the original problem. OpenCL
can assist in obtaining such block solutions. The important part in programming
such block solutions is efficiently working with the relationship between the blocks.

OpenCL has this block handling ability extending into multi-dimensions. To
make full use of OpenCL, the two (and three) dimensional property of the ND Range
should be used. Each OpenCl cell represents a block which needs to know where
in the overall structure it is placed, and thus contributing. The OpenCL system
provides such information. This information is accessed by a kernel via OpenCL
library functions calls, the more useful of which are shown in Table 2.

Given a two dimensional range a program to demonstrate the division of that
range into blocks and each block having it’s own assigned position is of interest.
Such a program is listed in Figure 15. The range is 12 elements along the x axis,
and 15 elements along the y axis. Each of thos elements corresponds to an OpenCl
work-item. Further, the work-item along the x axis are gathered into clusters of 3
work-items each, and into clusters of 5 work-items along the y axis. Each of those
clusters is an OpenCL work-group.

Before considering the output of Figure 15, it’s kernel was changed to that of Fig-
ure 6. Everything else remained the same. The kernel receives the two dimensional
array A[][] from the host program as a one dimensional array into which the ker-

14

nel delivers it’s results. In the Figure 6 kernel only the first four entries in this array
are used.

const char * programSource =
” k e r n e l \n”
” void map(g l o b a l i n t *A) \n”
”{ \n”
” i n t xgi , ygi ; \n”
” i n t xgs , ygs ; \n”
” i n t x l i , y l i ; \n”
” i n t xhi , yhi ; \n”
” \n”
” xgi = get group id (0) ; \n”
” ygi = get group id (1) ; \n”
” x l i = g e t l o c a l i d (0) ; \n”
” y l i = g e t l o c a l i d (1) ; \n”
” xgs = g e t g l o b a l s i z e (0) ; \n”
” ygs = g e t g l o b a l s i z e (1) ; \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” yhi = g e t g l o b a l i d (1) ; \n”
” \n”
” A[ygi] = ygs ; \n”
”} \n ” ;

Figure 6: Kernel used to determine OpenCL worker parameters

Table 5: Kernel parameters extracted using Figure 6

Position Parameter Values Unstable
A[xgi] xgs 12 12 12 12
A[xgi] ygs 15 15 15 15
A[xgi] xgi 0 1 2 3
A[xgi] ygi 2 2 2 2 *
A[xgi] xhi 2 5 8 11
A[xgi] yhi 14 14 14 14 *
A[xgi] xli 2 2 2 2
A[xgi] yli 4 4 4 4
A[ygi] xgs 12 12 12
A[ygi] ygs 15 15 15
A[ygi] xgi 3 3 3 *
A[ygi] ygi 0 1 2
A[ygi] xhi 11 11 11 *
A[ygi] yhi 4 9 14
A[ygi] xli 2 2 2
A[ygi] yli 4 4 4

15

The program of Figure 15 using the kernel of Figure 6 was compiled and exe-
cuted multiple times. The index in array A[] was alternately set as xgi and ygi
to get the numbering of the work-groups along the x and y directions, respectively.
Each of the four library functions were assigned to that array element for both the
x and y directions. Table 5 shows the results obtained. Each value on a line corre-
sponds to a separate work-group.

Table 5 contains all the information needed to write a kernel for the example
range. Table 5 is divided into an upper and lower half. The upper half has 4 val-
ues for each entry while the lower half has 3. This follows from the xgi and ygi
argument of the A[] array used in the respective halves, where the OpenCL func-
tion get group id() obtained the values. The values 4 (12/3) and 3 (15/5) were
supplied as corresponding entries in the arrays global[] and local[] in the host
program. The xhi and yhi values in their corresponding xgi and ygi associations
are the upper limit for indexing work-items in the x and y direction. The values of
xgs and ygs were the size of the overall range (work-item count) in the x and y
directions, respectively.

Note: The values returned for ygi and yhi in the xgi half of Table 5, and the
xgi and xhi values in the ygi half of the table are indicated as unstable. This fol-
lows from repeated runs of the kernel displaying those values producing changing
values. The xli and yli values were respectively the same for both xgi and ygi
index of the A[] array.

Each of the 12 work-groups (4 * 3) has access to only one set of numbers from
Table 5. It will know the total number of work-items along the x and y axes of the
range from the xgs and ygs respective values. It will know it’s x and y position
in the range via the xgi and ygi respectively. it will know the upper limit in the x
and y directions of the total work-items which it is to process via the xhi and yhi
values. The xli and yli values will give the number of work-items below the xhi
and yhi values which that work-group is to process. A numeric value of one (1) has
to be added to the xli and yli values to include the xhi and yhi work-item to be
processed by that work-group.

The problem with the values produced by this technique is their dependency on
the xgi and ygi array index. These indices gave the appropriate 4 and 3 values
respectively. But they also had an affect on the values produced; in four cases pro-
ducing values which changed with subsequent runs of the kernel. Also, although
the xhi and yhi values would be useful, their values were influence by the xgi
and ygi used in their determination.

16

include <s t d i o . h>
include <s t d l i b . h>
include <CL/ c l . h>

def ine SIZEX 12
def ine SIZEY 15

i n t A[SIZEY] [SIZEX] ;

const char * programSource =
” k e r n e l \n”
” void map(g l o b a l i n t *A) \n”
”{ \n”
” i n t xgi , ygi , xgs , ygs ; \n”
” i n t x l i , y l i , xhi , yhi ; \n”
” \n”
” xgi = get group id (0) ; \n”
” ygi = get group id (1) ; \n”
” x l i = g e t l o c a l i d (0) ; \n”
” y l i = g e t l o c a l i d (1) ; \n”
” xgs = g e t g l o b a l s i z e (0) ; \n”
” ygs = g e t g l o b a l s i z e (1) ; \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” yhi = g e t g l o b a l i d (1) ; \n”
” \n”

” A[xgi] = xhi ; \n”
”} \n ” ;

i n t main ()
{

i n t i , j ;
c l p l a t f o r m i d platform ;
c l d e v i c e i d device ;
c l i n t r e t ;
c l u i n t ret num devices , ret num platforms ;
c l c o n t e x t contex t ;
cl mem a mem obj , b mem obj , c mem obj ;
cl command queue command ;
cl program program ;
c l k e r n e l kernel ;
s i z e t g loba l [3] ;
s i z e t l o c a l [3] ;
long dataSizeA , dataSizeC ;
s i z e t s i z e r e t ;

/* prepare data */

dataSizeA = SIZEX * SIZEY * s i z e o f (i n t) ;
f o r (i = 0 ; i < SIZEY ; i ++)

f o r (j = 0 ; j < SIZEX ; j ++)
A[i] [j] = 0 ;

Figure 7: Program to produce an array of kernel parameters (Continues . . .)

17

/* setup CPU */
r e t = clGetPlat formIDs (1 , &platform , &ret num platforms) ;
r e t = clGetDeviceIDs (platform , CL DEVICE TYPE CPU , 1 , &device ,

&ret num devices) ;

contex t = c lCreateContext (NULL, 1 , &device , NULL, NULL, &r e t) ;
command = clCreateCommandQueueWithProperties (context , device , 0 , &r e t) ;

a mem obj = c l C r e a t e B u f f e r (context , CL MEM WRITE ONLY, dataSizeA , NULL,
&r e t) ;

r e t = clEnqueueWriteBuffer (command, a mem obj , CL TRUE , 0 , dataSizeA ,
A, 0 , NULL, NULL) ;

program = clCreateProgramWithSource (context , 1 ,
(const char **)& programSource , NULL, &r e t) ;

r e t = clBuildProgram (program , 1 , &device , NULL, NULL, NULL) ;
kernel = c lCrea teKerne l (program , ”map” , &r e t) ;

r e t = clSetKernelArg (kernel , 0 , s i z e o f (cl mem) , &a mem obj) ;

g loba l [0] = SIZEX ; g loba l [1] = SIZEY ; ;
l o c a l [0] = 3 ; l o c a l [1] = 5 ;
r e t = clEnqueueNDRangeKernel (command, kernel , 2 , NULL, global ,

l o c a l , 0 , NULL, NULL) ;

r e t = clEnqueueReadBuffer (command, a mem obj , CL TRUE , 0 , dataSizeA ,
A, 0 , NULL, NULL) ;

r e t = c l F l u s h (command) ;
r e t = c l F i n i s h (command) ;
r e t = c lRe leaseKerne l (kernel) ;
r e t = clReleaseProgram (program) ;
r e t = clReleaseMemObject (a mem obj) ;
r e t = clReleaseMemObject (c mem obj) ;
r e t = clReleaseCommandQueue (command) ;
r e t = c lRe leaseContext (contex t) ;

f o r (j = 0 ; j < SIZEY ; j ++) {
f o r (i = 0 ; i < SIZEX ; i ++) p r i n t f (”%4d ” , A[j] [i]) ;
p r i n t f (”\n ”) ;

}

re turn (0) ;
}

Figure 7: Program to produce an array of kernel parameters

18

7 Practical parameters accessible by the kernel

The kernel in Figure 8 is a replacement of that in Figure 6 for use in the program
of Figure 15. In this kernel the array index Idx is formed from the x and y values
returned by the get global id() OpenCL library function for each work-item
which executes the kernel. Those x and y values are mapped into the one dimen-
sional form of the A[] array by using the limit of the x dimension returned by the
get global id(0) function.

const char * programSource =
” k e r n e l \n”
” void map(g l o b a l i n t *A) \n”
”{ \n”
” i n t xgi , ygi , xgs , ygs ; \n”
” i n t x l i , y l i , xhi , yhi ; \n”
” i n t Idx ; \n”
” \n”
” xgi = get group id (0) ; \n”
” ygi = get group id (1) ; \n”
” x l i = g e t l o c a l i d (0) ; \n”
” y l i = g e t l o c a l i d (1) ; \n”
” xgs = g e t g l o b a l s i z e (0) ; \n”
” ygs = g e t g l o b a l s i z e (1) ; \n”
” xhi = g e t g l o b a l i d (0) ; \n”
” yhi = g e t g l o b a l i d (1) ; \n”
” \n”
” Idx = yhi * xgs + xhi ; \n”
” A[Idx] = y l i ; \n”
”} \n ” ;

Figure 8: Kernel to find usable indexing parameters

From the program of Figure 15 the example problem being considered is centred
on a two dimensional array A[][] of dimension 15 by 12, i.e. 15 elements (num-
bers) along the y axis and 12 elements along the x axis. The two dimensional array
is passed to the kernel as a one dimensional array. In the host program, the two di-
mensional array is decomposed into 4 work-groups along x axis and 3 work-groups
along the y axis. So the 4 work-groups along the x axis contain 3 work-item and the
3 work-groups along the y axis contain 5 work-items.

The OpenCL (pocl) system is to map the 12 work-groups (4 * 3) to 12 CPU cores
– one work-group to each CPU core. Each of those 12 work-groups is to process 15
work-items (3 * 5).

The host considers the array A[][] as two dimensional. But the kernel con-
siders the matrix as one dimensional. In processing, the kernel must conform to the
dimensionality imposed by the host. This is simplified by the use of OpenCL library
functions such as in the kernel of Figure 8. By changing the variable assigned to the

19

A[Idx] array in the kernel of Figure 8 and processing that kernel with the program
of Figure 15 an insight into positional data available to a kernel was sought.

Figure 9 and Figure 10 show the x and y coordinates, respectively, of each work-
item viewed by the kernel corresponding to the elements of the two dimensional
matrix A[][]. These values cover the who range of the A[][] matrix.

0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11

Figure 9: Kernel’s view of get global id(0) on 12/3 by 15/5 range

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 13 13 13
14 14 14 14 14 14 14 14 14 14 14 14

Figure 10: Kernel’s view of get global id(1) on 12/3 by 15/5 range

The function get global size(0) would return a value of 12, corresponding

20

to Figure 9. The function get global id(1) would return a value of 15 corre-
sponding to Figure 10.

Figure 11 gives the work-group numbering of the work-items along the x axis of
the range. The numbers are the same within each work-group. Similarly, Figure 12
gives the work-group numbering of work-items along the y axis of the range.

0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 1 1 1 2 2 2 3 3 3

Figure 11: Kernel’s view of get group id(0) on 12/3 by 15/5 range

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

Figure 12: Kernel’s view of get group id(1) on 12/3 by 15/5 range

Figure 13 shows the indices of the work-items along the x axis in the individual
x axis work-groups.. Similarly, Figure 14 shows the indices of the work-items along

21

the y axis in the individual y axis work-groups. Withing in each work-group, the
work-items are independent of all others although spanning the same values.

0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2 0 1 2

Figure 13: Kernel’s view of get local id(0) on 12/3 by 15/5 range

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4

Figure 14: Kernel’s view of get local id(1) on 12/3 by 15/5 range

8 Matrix multiplication

One practical use of 2D OpenCL (pocl) is multiplication of matrices. The program
listed in Figure 15 multiplies two matrices of integers, each of dimension 12 x 12.

22

Matrix A is multiplied by the multiplication and the required result is returned in
matrix C. Each work-group performs the multiplication of one row of matrix A and
one column of matrix B, and returns the overall addition of those products as one
value in the result matrix C. Finally, the A, B, and C matrices are printed.

include <s t d i o . h>
include <s t d l i b . h>
include <CL/ c l . h>

def ine SIZE 12

i n t A[SIZE] [SIZE] , B [SIZE] [SIZE] , C[SIZE] [SIZE] ;

const char * programSource =
” k e r n e l \n”
” void matmul (g l o b a l i n t *A, \n”
” g l o b a l i n t *B , \n”
” g l o b a l i n t *C, \n”
” i n t N) \n”
”{ \n”
” i n t i ; \n”
” i n t acc ; \n”
” \n”
” const i n t xhi = g e t g l o b a l i d (0) ; \n”
” const i n t yhi = g e t g l o b a l i d (1) ; \n”
” \n”
” acc = 0 ; \n”
” f o r (i = 0 ; i < N; i ++) \n”
” acc += B [i *N + xhi] * A[yhi *N + i] ; \n”
” C[yhi *N + xhi] = acc ; \n”
” \n”
”} \n ” ;

i n t main ()
{

i n t i , j ;
i n t markerA , markerB ;
c l p l a t f o r m i d platform ;
c l d e v i c e i d device ;
c l i n t r e t ;
c l u i n t ret num devices , ret num platforms ;
c l c o n t e x t contex t ;
cl mem a mem obj , b mem obj , c mem obj ;
cl command queue command ;
cl program program ;
c l k e r n e l kernel ;
s i z e t g loba l [3] ;
s i z e t l o c a l [3] ;
long dataS ize ;
s i z e t s i z e r e t ;

Figure 15: Matrix multiplication (Continues . . .)

23

/* prepare data */
markerA = 1 ;
markerB = SIZE * SIZE ;
f o r (i = 0 ; i < SIZE ; i ++)

f o r (j = 0 ; j < SIZE ; j ++) {
markerA++;
markerB − −;
A[i] [j] = markerA ;
B [i] [j] = markerB ;
C[i] [j] = 0 ;

}

dataSize = SIZE * SIZE * s i z e o f (i n t) ;

/* setup CPU */
r e t = clGetPlat formIDs (1 , &platform , &ret num platforms) ;
r e t = clGetDeviceIDs (platform , CL DEVICE TYPE CPU , 1 , &device ,

&ret num devices) ;

contex t = c lCreateContext (NULL, 1 , &device , NULL, NULL, &r e t) ;
command = clCreateCommandQueueWithProperties (context , device , 0 , &r e t) ;

a mem obj = c l C r e a t e B u f f e r (context , CL MEM READ ONLY, dataSize , NULL,
&r e t) ;

b mem obj = c l C r e a t e B u f f e r (context , CL MEM READ ONLY, dataSize , NULL,
&r e t) ;

c mem obj = c l C r e a t e B u f f e r (context , CL MEM WRITE ONLY, dataSize , NULL,
&r e t) ;

r e t = clEnqueueWriteBuffer (command, a mem obj , CL TRUE , 0 , dataSize , A,
0 , NULL, NULL) ;

r e t = clEnqueueWriteBuffer (command, b mem obj , CL TRUE , 0 , dataSize , B ,
0 , NULL, NULL) ;

r e t = clEnqueueReadBuffer (command, c mem obj , CL TRUE , 0 , dataSize ,
C, 0 , NULL, NULL) ;

program = clCreateProgramWithSource (context , 1 ,
(const char **)& programSource , NULL, &r e t) ;

r e t = clBuildProgram (program , 1 , &device , NULL, NULL, NULL) ;
kernel = c lCrea teKerne l (program , ”matmul ” , &r e t) ;

r e t = clSetKernelArg (kernel , 0 , s i z e o f (cl mem) , &a mem obj) ;
r e t = clSetKernelArg (kernel , 1 , s i z e o f (cl mem) , &b mem obj) ;
r e t = clSetKernelArg (kernel , 2 , s i z e o f (cl mem) , &c mem obj) ;
i = SIZE ;
r e t = clSetKernelArg (kernel , 3 , s i z e o f (i n t) , &i) ;

g loba l [0] = SIZE ; g loba l [1] = SIZE ;
l o c a l [0] = 1 ; l o c a l [1] = 1 ;
r e t = clEnqueueNDRangeKernel (command, kernel , 2 , NULL, global ,

l o c a l , 0 , NULL, NULL) ;

Figure 15: Matrix multiplication (Continues . . .)

24

r e t = clEnqueueReadBuffer (command, c mem obj , CL TRUE , 0 , dataSize , C,
0 , NULL, NULL) ;

r e t = c l F l u s h (command) ;
r e t = c l F i n i s h (command) ;
r e t = c lRe leaseKerne l (kernel) ;
r e t = clReleaseProgram (program) ;
r e t = clReleaseMemObject (a mem obj) ;
r e t = clReleaseMemObject (c mem obj) ;
r e t = clReleaseCommandQueue (command) ;
r e t = c lRe leaseContext (contex t) ;

f o r (i = 0 ; i < SIZE ; i ++) {
f o r (j = 0 ; j < SIZE ; j ++) p r i n t f (”%4d ” , A[i] [j]) ;
p r i n t f (”\n ”) ;

}
p r i n t f (”\n ”) ;

f o r (i = 0 ; i < SIZE ; i ++) {
f o r (j = 0 ; j < SIZE ; j ++) p r i n t f (”%4d ” , B [i] [j]) ;
p r i n t f (”\n ”) ;

}
p r i n t f (”\n ”) ;

f o r (i = 0 ; i < SIZE ; i ++) {
f o r (j = 0 ; j < SIZE ; j ++) p r i n t f (”%8d ” , C[i] [j]) ;
p r i n t f (”\n ”) ;

}
p r i n t f (”\n ”) ;

re turn (0) ;
}

Figure 15: Matrix multiplication

Using this approach, there are 144 work-groups in total, each containing 1 work-
item. The parameters are set in the global[] and local[] array in Figure 15.

9 Better parallel matrix multiplication processing

Although the program of Figure 15 performs matrix multiplication by parallel pro-
cessing, the introduction of tiles can increase the amount of processing in parallel.
From the matrix viewpoint, the rows and columns are broken into pieces. Because
the matrices are two dimensional, the breaking of each dimension into pieces en-
ables those pieces to be gathered together into two dimensional tiles. The matrices
are then covered by those tiles. Processing is performed using those tiles and the

25

results from each tile combined to produce the required result.

The kernel in Figure 16 replaces the kernel of Figure 15 to produce matrix multi-
plication. In the Figure 16 kernel, tiles are used to do the parallel processing. To use
this kernel in the program of Figure 15 only other change was the local[] array
values of 1 in the host program, was replace by a tile size of, say, 3.

In the kernel of Figure 16, local memory is used to hold the matrix tiles being
processed. Data is copied from global memory holding the whole A and B, into lo-
cal memory subbA and subB. The matrix multiplication is performed in the local
memory which results in faster processing. From Table 3, local memory, which cor-
responds to L3 cache on CPU cores used by pocl, is small but common to all cores.
A kernel is executed in each CPU core.

const char * programSource =
” k e r n e l \n”
” void matmul (g l o b a l i n t *A, \n”
” g l o b a l i n t *B , \n”
” g l o b a l i n t *C, \n”
” i n t N) \n”
”{ \n”
” i n t i , j ; \n”
” i n t acc ; \n”
” l o c a l i n t Asub [4 0 0] ; \n”
” l o c a l i n t Bsub [4 0 0] ; \n”
” \n”
” const i n t xgi = g e t g l o b a l i d (0) ; \n”
” const i n t ygi = g e t g l o b a l i d (1) ; \n”
” const i n t x l i = g e t l o c a l i d (0) ; \n”
” const i n t y l i = g e t l o c a l i d (1) ; \n”
” const i n t x l s = g e t l o c a l s i z e (0) ; \n”
” \n”
” acc = 0 ; \n”
” f o r (i = 0 ; i < (N/ x l s) ; i ++) { \n”
” Asub [y l i * x l s + x l i] = A[ygi *N + (i * x l s + x l i)] ; \n”
” Bsub [y l i * x l s + x l i] = B [(i * x l s + y l i) *N + xgi] ; \n”
” b a r r i e r (CLK LOCAL MEM FENCE) ; \n”
” \n”
” f o r (j = 0 ; j < x l s ; j ++) \n”
” acc += Asub [y l i * x l s + j] * Bsub [j * x l s + x l i] ; \n”
” b a r r i e r (CLK LOCAL MEM FENCE) ; \n”
” } \n”
” C[ygi *N + xgi] = acc ; \n”
” \n”
”} \n ” ;

Figure 16: Matrix multiplication OpenCL kernel using tiles

26

